HERMETIC

31 G 69.723

SOLID STATE DEVICES, INC.

EST. 1967

Hermetic GaN Power FETs

FEATURES

- Exceptionally low R_{DS(ON)}
- Low QG simplifies gate drive circuit
- Low thermal resistance
- Hermetically sealed packaging new chip-scale package, SMG.3
- TX, TXV, and S level screening available

Hermetic GaN Power FETs

Hermetic GaN Power FETs

Hermetic Packages

Package	Profile	Footprint
SMG.3	.085	.190 x .345
SMD.5	.135	.304 x .408
Cerpack	.115	.340 x .580
SMD1	.150	.455 x .630
TO-257	.210	.420 x .840
TO-254	.260	.545 x .875

Comparison of SSDI GaN FET with Competitor's MOSFET

Parameters / Electrical Characteristics		SGF46E70	Competitor's MOSFET
Continuous Drain Current, I _D		46 A	46 A
Drain-Source Breakdown Voltage, V _{(BR)DSS MIN}	700 V	650 V	
Drain to Source On State Resistance, $R_{DS(ON)}$ $V_{GS} = 10 \text{ V}, I_D = 30 \text{ A}, T_J = 25^{\circ}\text{C}$	Typ Max		40 mΩ (@ 24.9 A) 45 mΩ (@ 24.9 A)
Total Gate Charge, Q_G $V_{DS} = 400 \text{ V}, T_J = 25^{\circ}\text{C}$	Тур	24 nC (@ 32 A)	93 nC (@ 24.9 A)
Source to Drain Reverse Recovery Time, t_{RR} $V_{DS} = 400 \text{ V}, T_{J} = 25^{\circ}\text{C}$	Тур	65 ns (@ 30 A, di/dt = 1000 A/μs)	725 ns (@ 46 A, di/dt = 60 A/µs)
Reverse Recovery Charge, Q _{RR} V _{DD} = 400 V, T _J = 25°C		178 nC (@ 30 A, di/dt = 1000 A/µs)	13,000 nC (@ 46 A, di/dt = 60 A/µs)
Package		SMD1, TO-254	TO-247

GaN and Si FET Applications

GaN FET Applications

- High Efficiency DC-DC / PoL Converters
- Motor Controller
- Robotics / Automation
- Military and Aerospace

ON-BOARD SENSORS ELECTRONICS POWER PFC BOOST DISTRIBUTION / DC-DC CONVERTER **CONVERTER SGF46E70** SGF15E100 **SGF90N04 SGF48N10 SGF48N20 SGF06N35**

GENERATOR RECTIFICATION

Simplified High Power System

COMMUNICATIONS

PAYLOADS

Hermetic GaN Power FETs Pre-Qualification Testing

SGF48N10

- 1. Temperature Cycle: 100 cycles, -55°C to +150°C
- 2. HTRB: 48 hours, 150°C, $V_{DS} = +80 V_{DC}$, $V_{GS} = 0 V$
- 3. HTGB: 48 hours, 150° C, $V_{gs} = +4 V_{DC}$, $V_{DS} = 0 V$

SGF46E70

- 1. Temperature Cycle: 100 cycles, -55°C to +150°C
- 2. HTRB: 240 hours, 150°C, $V_{DS} = +520 V_{DC}$, $V_{GS} = 0 V$
- 3. HTGB: 48 hours, 150°C, $V_{GS} = +16 V_{DC}$, $V_{DS} = 0 V$

Radiation Tolerance

1. Inherent tolerance based on physical attribute

- MOSFETs: gate oxide layer susceptible to formation of traps (holes) when exposed to gamma radiation
- <u>GaN Transistors</u>: no gate oxide layer; bulk GaN material is radiation hard compared to Si and GaAs, and close to that of SiC

2. Radiation testing by die manufacturers / agencies

- TID up to 10.8 kGy: 40 V & 200 V GaN have shown considerable hardness
- Accelerated SEB (total fluence = 1.3E+09 neutron/cm²)
 - 700 V GaN device: no failures
 - Superjunction Si MOSFET: failed

Challenges Facing GaN Transistor

Radiation Data

- High cost
- Myriad of test conditions / largely dependent on mission
- SSDI plans to conduct radiation testing on its own or in partnership with potential customers

Challenges Facing GaN Transistor Gate Drivers

Enhancement Mode Series V_{GS} rating of +6 V and -4 V

- Exceeding this rating can lead to failure typically manifested by off-state drain leakage current increase
- Commercial gate drivers available: fast and regulated to the proper voltage level (i.e. Tl's LMG1205, LMG1210 and UCC27611; Intersil's rad hardened ISL70040SEH)
- Cascode series does not have gate drive limitation due to built-in Si MOSFET driver